Cu^I and Cu^{II} Salts of Group VIA Elements as Catalysts for Living Radical Polymerization Initiated with Sulfonyl Chlorides

V. PERCEC, A. D. ASANDEI, F. ASGARZADEH, T. K. BERA, B. BARBOIU

Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323

Received 4 August 2000; accepted 8 August 2000

ABSTRACT: The living radical polymerization of methyl methacrylate initiated from sulfonyl chlorides and catalyzed by the new catalytic systems Cu₂Y/Bpy and CuY/Bpy, where Y is O, S, Se, or Te and Bpy is 2,2'-bipyridine, is described. An induction time was observed in all polymerization experiments. The values of the experimental rate constants of polymerization (k_p^{exp}) increased whereas the corresponding induction times decreased in the order Y = O < S < Se < Te. For the entire series of catalysts, k_p^{exp} for CuY was less than k_p^{exp} for Cu₂Y. A mechanistic interpretation that involves the *in situ* generation of the CuCl/CuCl₂ pair, starting from Cu₂Y or CuY, is provided. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3839–3843, 2000

Keywords: living radical polymerization; sulfonyl chloride; methyl methacrylate; copper oxide; copper sulfide; copper selenide; copper telluride; copper chloride

INTRODUCTION

In a recent series of publications¹ from our laboratory, we demonstrated that aryl, l(a-f) alkyl, l(d-f)and perfloroalkyl^{1(h)} sulfonyl chlorides represent a universal class of initiators for the metal-catalyzed living radical polymerization of styrenes, acrylates, and methacrylates. In contrast to alkyl halide-based initiators that produce carbon-centered radicals during the initiation process, sulfonyl halide-based initiators generate sulfonyl radicals that, in contrast to carbon-centered radicals, do not dimerize via an irreversible mechanism. This property of sulfonyl halide-based initiators provides many opportunities for complex organic synthesis via living radical polymerization processes. Although a large variety of catalysts² have been employed in this polymerization process, copper halide-based catalysts are the least expensive. However, there are several disadvantages associated with CuCl and CuBr catalysts. First, they oxidize easily to Cu^{II} species in the presence of air.³ Second, the solubilities of Cu^I and Cu^{II} species in the presence of bidentate or tridentate ligands are different, so mechanistic investigations and the dynamic equilibrium between radical and covalent propagating species are affected by an unknown Cu^I/Cu^{II} ratio. Third, the polymerization mixture catalyzed by CuCl or CuBr is acidic and, therefore, generates numerous preparative limitations.

Recently, we demonstrated that $\text{Cu}(0)^{1(f,g)}$ and $\text{Cu}_2\text{O}^{1(f,g)}$ in the presence of ligands such as 2,2'bipyridine (Bpy),^{1(a,b)} 4,4'-dinonyl-2,2'bipyridine, and 2-(2-pyridyl)-4,5-dihydrooxazole^{1(f)} provide a valuable alternative to CuCl-based and CuBrbased catalysts. In addition, the catalytic activity of Cu₂O is enhanced and the induction time of this reaction is eliminated by phase-transfer catalysis.^{1(f)} We believe that Cu₂O generates, *in situ*, extremely reactive and soluble CuCl species.

Correspondence to: A. D. Asandei

Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 38, 3839–3843 (2000) © 2000 John Wiley & Sons, Inc.

Run	Catalyst	[M]/[I]/ [Catalyst]/ [Bpy]	$k_p^{ m exp} imes 10^3 \ ({ m min}^{-1})$	$t_{\rm ind} \\ ({\rm min})$	M_w/M_n	Time (h)	Conversion (%)	Initiator Efficiency ^a (%)
1	Cu ₂ O	200/1/2/6	3.2	74	1.11	21.5	98	98
2	Cu ₂ S	200/1/2/6	16.8	20	1.11	4.0	98	98
3	Cu ₂ Se	200/1/2/6	27.7	12	1.11	2.0	95	98
4	$\tilde{\mathrm{Cu}_{2}\mathrm{Te}}$	200/1/2/6	57.6	9	1.11	1.2	97	99
5	CuĈl	200/1/2/6	37.3	0	1.12	1.2	93	98
6	CuO	200/1/4/12	< 0.1	_	2.5	38	19	
7	CuS	200/1/4/12	2.0	58	1.11	23.2	93	99
8	CuSe	200/1/4/12	14.3	11	1.13	2.8	90	96

Table I. Polymerization of MMA Initiated with PDSC and Catalyzed by Cu₂O, Cu₂S, Cu₂Se, Cu₂Te, CuCl, CuO, CuS, and CuSe in the Presence of Bpy at 90 °C in Ph₂O ([MMA] = 6.3M)

^a Determined as the slope of the plot of $M_{n,\text{GPC}}$ versus M_{th} ($M_{th} = [\text{M}]/[\text{I}] \times 100.12 \times \text{conversion}$ (%)/100 + 367).

At the same time, this catalyst maintains neutral reaction conditions throughout the polymerization process.

The results obtained with Cu_2O prompted us to investigate an entire series of Cu^I and Cu^{II} salts of group VI elements to identify more soluble and active catalysts for living radical polymerization.

 $Cu_2O^{4(a,f-i)}$ and $CuO^{4(a-g)}$ were previously reported as catalysts for the Kharasch addition of alkyl halides to olefins and related radical addition reactions. CuS was used as a catalyst in other radical reactions^{5(a)} and for the oxidative polymerization of 2,6-dimethylphenol.^{5(b)} CuSe was employed as a catalyst for olefin epoxidation $^{6(a)}$ and other radical oxidations, $^{6(b,c)}$ whereas Cu₂Te was used as a catalyst for the synthesis of alkylhalosilanes^{7(a)} and acrolein.^{7(b)} To the best of our knowledge, there are no reports on the Cu₂Ycatalyzed or CuY-catalyzed (where Y is S, Se, or Te) radical polymerization of vinyl monomers initiated with alkyl halides or sulfonyl halides. Also, there are no previous reports on the radical addition of alkyl or arylsulfonyl chlorides to multiple bonds catalyzed by Cu₂Y or CuY (where Y is S, Se, or Te). Here, we report the first examples of the catalytic use of these compounds together with Bpy as a ligand in the sulforyl chloride-initiated living radical polymerization of methyl methacrylate (MMA).

RESULTS AND DISCUSSION

Table I presents the polymerization of MMA initiated from 4,4'-bis(chlorosulfonyl)diphenylether^{1(c)} at 90 °C in diphenyl ether (Ph₂O) and catalyzed

by Cu₂Y/Bpy and CuY/Bpy (where Y is O, S, Se, or Te). A CuCl/Bpy-catalyzed polymerization under the same conditions is included for comparison. The corresponding first-order kinetic plots for the Cu₂Y-catalyzed and CuY-catalyzed polymerizations are shown in Figure 1(a,b). As evidenced by Figure 1, the number of growing chains for each system was constant in time. A continuous increase in the experimental rate constant of polymerization (k_p^{exp}) in the order O < S < Se < Teand a simultaneous decrease in the induction times of the polymerization were observed. These trends qualitatively paralleled the decrease in the ionic character and strength of the Cu-Y bond, the increase in the softness of Y^{-2} anion, and the increase in the solubility and metallic character of the Cu₂Y or CuY salt in going from O to S to Se to Te. The corresponding linear dependencies of the experimental molecular weights, as determined by gel permeation chromatography (GPC), versus the theoretical molecular weights are plotted in Figure 2. With the exception of the CuO-based polymerization, which did not progress further than a 20% conversion, as calculated from Figure 2 and listed in Table I, the initiator efficiency was in all cases greater than or equal to 98%. As shown in Figure 3, although the polydispersities started from higher values for the Cu₂Y catalysts, in all cases they converged to values lower than 1.15. These features are typical of a living polymerization mechanism. In addition, in all cases Cu_2Y -based catalysts provided higher k_p^{exp} values and shorter induction times than the corresponding CuY catalysts.

A potential explanation for these results is provided by mechanistic considerations. Although

Figure 1. First-order kinetic plots for the polymerization of MMA at 90 °C in Ph_2O catalyzed by (a) Cu_2Te , CuCl, Cu_2Se , Cu_2S , and Cu_2O , [MMA]/[PDSC]/[catalyst]/[Bpy] = 200/1/2/6, and (b) CuSe, CuS, and CuO, [MMA]/[PDSC]/[catalyst]/[Bpy] = 200/1/4/12 ([MMA] = 6.3 M).

the mechanism for the Cu₂O-catalyzed and CuOcatalyzed Kharasch addition was never unequivocally elucidated,^{4(e)} it is reasonable to assume that the polymerization was mediated via the *in situ* generation of the CuCl/CuCl₂ pair, which catalyzed the process as previously described.¹ The formation mechanism of CuCl and CuCl₂ from Cu₂Y and CuY might have occurred as described next, where R is either the initiator fragment or the growing chain:

$$\mathbf{R} \cdot \mathbf{Cl} + \mathbf{Cu}_2 \mathbf{Y} \to \mathbf{R}^{\bullet} + \mathbf{Cu}\mathbf{Cl} + \mathbf{Cu}\mathbf{Y}$$
(1)

$$2R-Cl + Cu_2 Y \rightarrow 2 R^{\bullet} + 2CuCl + [Y] \qquad (2)$$

$$Cu_2Y \rightarrow Cu(0) + CuY$$
 (3)

$$Cu(0) + R-Cl \rightarrow R^{\bullet} + CuCl$$
 (4)

$$R-Cl + CuCl \rightarrow R^{\bullet} + CuCl_2$$
 (5)

$$R-Cl + CuY \rightarrow [R-Cu^{III}YCl] \rightarrow R^{\bullet} + CuCl + [Y]$$
(6)

$$R-Cl + CuY \rightarrow [R-Y-Cu-Cl] \rightarrow R-Y^{\bullet} + CuCl \quad (7)$$

$$Cu_2Y + CuCl_2 \rightarrow CuY + 2CuCl$$
 (8)

 Cu_2Y and CuY may also act as reversible terminators of the growing chain:

Figure 2. Dependence of the experimental (GPC) molecular weight on the theoretical molecular weight for the metal-catalyzed living radical polymerization of MMA at 90 °C in Ph₂O catalyzed by (a) Cu₂Te (\bullet), CuCl (\blacksquare), Cu₂Se (\bullet), Cu₂S (\blacktriangle), and Cu₂O (\triangledown), [MMA]/[PDSC]/[catalyst]/[Bpy] = 200/1/2/6, and (b) CuSe (\bullet), and CuS (\blacktriangle), [MMA]/[PDSC]/[catalyst]/[Bpy] = 200/1/4/12 ([MMA] = 6.3 M).

Figure 3. Dependence of the polydispersity on the conversion for the metal-catalyzed living radical polymerization of MMA at 90 °C in Ph₂O catalyzed by (a) Cu₂Te, CuCl, Cu₂Se, Cu₂S, and Cu₂O, [MMA]/[PDSC]/[catalyst]/[Bpy] = 200/1/2/6, and (b) CuSe and CuS, [MMA]/[PDSC]/[catalyst]/[Bpy] = 200/1/4/12 ([MMA] = 6.3 M).

 $R^{\bullet} + Cu_2Y \rightarrow R\text{-}Cu\text{-}Y\text{-}Cu \rightarrow R\text{-}Cu^{\bullet} + CuY$ (9)

 $R^{\bullet} + CuY \rightarrow R-Y-Cu \rightarrow R-Y^{\bullet} + Cu(0)$ (10)

The formation of the elemental [Y] in similar reactions was previously proposed.^{4(e),8} Therefore, the continuous increase in k_p^{exp} and the decrease in the corresponding induction times on going from Y = O to Y = Te may be explained by a combination of factors. First, because of the weakening of the Cu—Y bond in the Y = O to Y = Teseries, the rate of CuCl generation in the system increased accordingly. Second, the inhibiting/retarding ability of the elemental [Y] species, which might have been generated as outlined, decreased in the same way, which was reflected in the parallel decrease of the induction times. For the polymerization catalyzed by CuO, the effect of the in situ generation of [O] was appreciable because the polymerization stopped at a 20% conversion. These arguments hold both for Cu₂Y and CuY catalysts. For the same Y, the difference in the catalytic activity between Cu₂Y and CuY could be explained by a combination of their different solubilities and reactivities (i.e., rates of CuCl generation). Of course, the real mechanism might have been more complex, as it is known that Cu₂S, CuS, Cu₂Se, CuSe, and Cu₂Te display semiconductor/photosensitizer $^{9(a-c)}$ or even metallic $^{9(d)}$ properties. In addition, the values of k_p^{exp} include the [Cu^I]/[Cu^{II}] ratios,^{1(d)} which in reality may be determined not only by [CuCl] and [CuCl₂] but also by a combination of $[Cu_2Y]$ and [CuY].

Although CuTe was not available for comparison, it was interesting to note that $k_p^{exp}_{CuSe}$ was

greater than $k_p^{\exp}_{Cu2O}$ and $k_p^{\exp}_{CuSe}$ was similar to $k_p^{\exp}_{Cu2S}$. It is possible that the higher solubility and increased reactivity of CuSe were responsible for this result. As seen in Table I, CuCl had the second highest k_p^{\exp} value and had no induction time. Interestingly, the k_p^{\exp} value for the Cu₂Te-catalyzed polymerization was 1.57 times larger than the one for the CuCl-catalyzed polymerization. In this case, according to the speculative mechanism previously described, it is possible that both Cu atoms in Cu₂Te led to the formation of CuCl in a concentration that was higher than in the CuCl-catalyzed polymerization experiment. In addition, the *in situ* generated CuCl was more reactive and more soluble than the commercial CuCl.

In conclusion, Cu_2Y/Bpy and CuCl/Bpy (where Y is O, S, Se, or Te) represent a new, extremely efficient, and valuable class of catalysts for the living radical polymerization initiated with sulfonyl chlorides.

EXPERIMENTAL

Materials

All materials, unless otherwise noted, were purchased from Aldrich. Copper (I) oxide (Alfa; >95%), copper (II) oxide (99.995%), copper (I) sulfide (99.99%), copper (II) sulfide (>99%), copper (I) selenide (99.95%), copper (II) selenide (99.99%), copper (I) telluride (Alfa; 99.5%), and copper (I) chloride (>99.995%) were used as received. MMA (Fisher; >98%) was first distilled from CaH_2 and then was passed through a basic Al_2O_3 chromatographic column (flash). Bpy was recrystallized from hexane. Phenoxybenzene-4,4'-disulfonyl chloride (PDSC) was synthesized as previously reported.^{1c} Ph₂O was distilled prior to use.

Techniques

¹H NMR (500-MHz) spectra were recorded on a Bruker DRX500 at 20 °C in CDCl₃ with tetramethylsilane as an internal standard. GPC analvses were performed on a PerkinElmer series 10 high-pressure liquid chromatograph equipped with an LC-100 column oven (40 °C), a Nelson Analytical 900 series integrator data station, a PerkinElmer 785A ultraviolet-visible detector (254 nm), a PerkinElmer LC-25 refractive index detector, and two AM gel columns (10 μ m, 500 Å; 10 μ m, 10⁴ Å). Tetrahydrofuran (Fisher; highperformance liquid chromatography grade) was used as an eluent at a flow rate of 1 mL/min. Number-average and weight-average molecular weights $(M_n \text{ and } M_w, \text{ respectively})$ were determined from calibration plots constructed with poly(methyl methacrylate) (PMMA) standards.

Typical Procedure for Polymerization Kinetics

Monomer (MMA, 2 mL, 18.8 mmol), solvent (Ph₂O, 1 mL), initiator (PDSC, 34.4 mg, 0.094 mmol), catalyst (Cu₂Te, 47.7 mg, 0.187 mmol), and ligand (Bpy, 87.8 mg, 0.562 mmol) were weighted directly in a 25-mL Schlenk tube. After four freeze-pump-thaw cycles, the tube was filled with argon, and the reaction mixture was heated at 90 °C in an oil bath. The side arm of the tube was purged with argon for at least 5 min before it was opened for samples to be removed at predetermined times with an airtight syringe. Samples were dissolved in CDCl₃, and the conversion was measured by ¹H NMR spectroscopy. A part of the solution was also injected in the GPC, and the number-average and weight-average molecular weights were measured versus PMMA standards with the refractive index detector. A UV signal was also observed for all samples because of the phenyl groups derived from the initiator.

Financial support from NSF, ARO (MURI), and Du-Pont (an unrestricted faculty award) is gratefully ac-knowledged.

REFERENCES AND NOTES

- (a) Percec, V.; Barboiu, B. Macromolecules 1995, 28, 7970; (b) Percec, V.; Barboiu, B.; Neumann, A.; Ronda, J. C.; Zhao, M. Macromolecules 1996, 29, 3665; (c) Percec, V.; Kim, H.-J.; Barboiu, B. Macromolecules 1997, 30, 6702; (d) Percec, V.; Kim, H.-J.; Barboiu, B. Macromolecules 1997, 30, 8526; (e) Percec, V.; Barboiu, B.; Kim, H.-J. J Am Chem Soc 1998, 120, 305; (f) Percec, V.; Barboiu, B.; van der Sluis, M. Macromolecules 1998, 31, 4053; (g) van der Sluis, M.; Barboiu, B.; Pesa, N.; Percec, V. Macromolecules 1998, 31, 9409; (h) Feiring, A. E.; Wonchoba, E. R.; Davidson, F.; Percec, V.; Barboiu, B. J Polym Sci Part A: Polym Chem 2000, 38, 3313.
- (a) Sawamoto, M.; Kamigato, M. CHEMTECH 1999, 29, 30; (b) Qiu, J.; Matyjaszewski, K. Acta Polym 1997, 48, 169; (c) Otsu, T. J Polym Sci Part A: Polym Chem 2000, 38, 2121; (d) Boutevin, B. J Polym Sci Part A: Polym Chem 2000, 38, 3235; (e) Louie, J.; Grubbs, R. H. Chem Commun 2000, 1479
- Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A., Ed.; Wiley: New York, 1995; Vol. 2, pp 1312, 1324.
- 4. (a) Hajek, M.; Malek, J. Synthesis 1977, 454; (b) Hajek, M.; Spirkova, B.; Malek, J. Collect Czech Chem Commun 1979, 44, 1608; (c) Hajek, M.; Malek, J. React Kinet Katal Lett 1979, 10, 77; (d) Hajek, M.; Malek, J. Collect Czech Chem Commun 1979, 44, 2393; (e) Hajek, M.; Malek, J. Collect Czech Chem Commun 1979, 44, 3695; (f) Hajek, M.; Silhavy, P.; Malek, J. Collect Czech Chem Commun 1980, 45, 1940; (g) Hajek, M.; Silhavy, P.; Malek, J. Collect Czech Chem Commun 1980, 45, 3488; (h) Hajek, M.; Silhavy, P. Collect Czech Chem Commun 1983, 45, 1710; (i) Nagashima, H.; Seki, K.; Ozaki, N.; Wakamatsu, H.; Itoh, K.; Tomo, Y.; Tsugi, J. J Org Chem 1990, 55, 985.
- (a) Tributsch, H.; Bennett, J. C. Ber Bunsen-Ges Phys Chem 1976, 80, 321; (b) Yonemitsu, E.; Sugio, A.; Tomita, T.; Yoshii, T. Jpn. Kokai Tokkyo Koho 50030119, 1975.
- (a) Smirnova, A. L.; Filippova, T. V.; Blyumberg, E. A. Izv Akad Nauk Ser Khim 1994, 12, 2130; (b) Timofeev, S. V.; Smirnova, A. L.; Blyumberg, E. A. Kinet Katal 1991, 32, 1176; (c) Smirnova, A. L.; Tavadyan, L. A.; Blyumberg, E. A. Kinet Katal 1988, 29, 1098.
- (a) Steiner, M.; Degen, B.; Wagner, G.; Licht, E.; Schulze, M. German Patent DE 19621306, 1997; (b) Nemec, J. W.; Schlaefer, F. W. French Patent 1494431, 1967.
- Kholmanskikh, Y. B.; Il'yashevich, I. I.; Kosnareva, I. A. Tr Ural Nauchno-Issled Proektn 1966, 9, 289.
- (a) Dance, I. Chem Aust 1991, 58, 206; (b) Zhao, X. K.; Baral, S.; Rolandi, R.; Fendler, J. H. J Am Chem Soc 1988, 110, 1012; (c) Mitani, M.; Takuya, K.; Kuratate, T. J Org Chem 1994, 59, 1279; (d) Brun, G.; Tedenac, J. C.; Maurin, M. Mater Res Bull 1982, 17, 379.