Theoretical Aspects of Controlled Radical Polymerization in a Dispersed Medium

Bernadette Charleux[†]

Laboratoire de Chimie Macromoléculaire, UMR 7610, Université Pierre et Marie Curie, Tour 44, 1er étage, 4, place Jussieu 75252 Paris Cedex 05 (France)

Received February 16, 2000; Revised Manuscript Received May 3, 2000

ABSTRACT: Kinetics of controlled radical polymerization (CRP) is examined in a dispersed medium, when the persistent radical effect operates. For that purpose, nitroxide-mediated CRP is considered in a miniemulsion system with oil-soluble alkoxyamine unimolecular initiator and in the absence of thermal self-initiation. An analytical expression of the rate of irreversible termination is proposed as a function of particle size, and it is compared with the rate of termination in bulk. From these expressions, the evolution with monomer conversion of the concentration of released nitroxide is calculated. For large particles, the polymerization kinetics was found to be similar in bulk and in the miniemulsion. In contrast for small particles, owing to slower terminations, the concentration of released nitroxide was shown to be smaller in the miniemulsion than in bulk, leading thus to a lower proportion of dead chains, a faster polymerization, and a broader molar mass distribution.

Introduction

Controlled radical polymerization (CRP) is a new, easy route to prepare well-defined (co)polymers with predictable molar mass and narrow molar mass distribution. 1 CRP is based either on a reversible termination process or on a reversible chain transfer process. In the first case, the now well-known nitroxide-mediated polymerization (NMP)² and atom transfer radical polymerization (ATRP)³ are mainly applied. In the second case, control is provided by the transfer of the terminal group from a dormant chain to an active one. It can be the direct exchange of a terminal iodine atom4 or an addition-fragmentation transfer process involving, for instance, dithioester end groups (RAFT).⁵ In both cases, macromolecular chains are built up and grow simultaneously. They undergo successive activation/deactivation cycles, and a very small fraction of the chains are instantaneously active. Irreversible terminations are not precluded but the overall proportion of dead chains remains small. When a reversible chain transfer process is applied, a conventional radical initiator is needed and the polymerization kinetics follows a classical stationary state. ^{6,8} Thus, whatever the polymerization medium, i.e., homogeneous or heterogeneous, kinetics should not differ from that of a classical radical polymerization. In contrast, with a reversible termination process, the polymerization kinetics is strongly affected and is regulated by the persistent radical effect (PRE).7,8 Analytical kinetic equations have been determined by Fischer⁷ and Fukuda, ⁸ describing the time evolution of the various components of the system when PRE operates. This calculation was performed for instance in the case of nitroxide-mediated CRP under homogeneous conditions when the polymerization is governed by the reactions presented in Scheme 1.

When initiation is performed by an alkoxyamine P-T in the absence of added free nitroxide, the initial concentrations are $[P-T]_0$ and $[P^{\bullet}]_0 = [T^{\bullet}]_0 = 0$, where P^{\bullet} and T^{\bullet} represent the propagating radicals and the

Scheme 1

P-T

$$k_a$$
 k_c
 k_c

P' + T'

 k_b

Pead chain

free nitroxide, respectively. Upon heating, homolytic cleavage of the alkoxyamine occurs and leads to the formation of P* and T* in equal concentrations and with the same rate. Nevertheless, when [P] increases, the irreversible termination between transient radicals P. cannot be neglected and results in a consumption of P. together with an accumulation of T. Fischer has demonstrated that [P] reaches a maximum value within a very short time scale (a few milliseconds). After this period, the time variations of [P] and [T] can be calculated and follow the power laws given below where k_a , k_c and k_t are the respective rate constants of activation, reversible recombination with the nitroxide, and irreversible termination (according to Scheme 1). *K* is the activation/recombination equilibrium constant $(K = k_a/k_c = [P^{\bullet}][T^{\bullet}]/[P-T]).$

$$[P^{\bullet}] = \left(\frac{K[P-T]_0}{3k_t}\right)^{1/3} t^{-1/3} \tag{1}$$

$$[T^{\bullet}] = (3k_{t}K^{2}[P-T]_{0}^{2})^{1/3}t^{1/3}$$
 (2)

$$k_{c}[P^{\bullet}][T^{\bullet}] = k_{a}[P-T]_{0} \tag{3}$$

Those equations were shown to apply when $K < [P-T]_0k_c/4k_t$. Concentrations of P* and T* are self-regulated and polymerization kinetics reaches a pseudo-equilibrium state with $[P-T] \gg [T^*] \gg [P^*]$. Consequently, at this stage, the rate of irreversible termination between propagating radicals is much slower than the rate of recombination of the propagating radicals with the free nitroxide: $k_t[P^*] \ll k_c[T^*]$. The system is then essentially governed by both the activation and recombination reactions.

[†] E-mail address: charleux@ccr.jussieu.fr.

Expression of the Rate of Termination for Nitroxide-Mediated CRP in Model Miniemulsion

In the miniemulsion polymerization considered here, the organic phase composed of monomer and of dissolved alkoxyamine is initially divided into stabilized droplets with diameter D, and volume $v_p = \pi D^3/6$ in which polymerization takes place upon thermal activation. The water-solubility of the alkoxyamine initiator is supposed negligible. In such a system, the alkoxyamine dormant chains and the active macroradicals are compartmentalized, i.e., they cannot exit from the particles. In contrast, the free nitroxide molecules are not compartmentalized and can exchange between the particles, via diffusion through the aqueous phase. Unlike classical emulsion or miniemulsion polymerizations, no radicals are supplied from decomposition of a watersoluble radical initiator; the propagating radicals are only generated in the polymerization loci by activation of the alkoxyamines. To simplify, the concentration of nitroxide in the aqueous phase will be first considered as negligible (partition is neglected). All the concentrations are expressed per volume unit of the organic phase; [P•], [T•], and [P-T] are the overall concentrations calculated for the total organic volume.

Considering N_i , the fraction of particles containing i active macroradicals, $\sum N_i = 1$ and $\tilde{n} = \sum i N_i = N_{\rm A} v_{\rm p} [{\bf P}^{\bullet}]$ is the average number of radicals per particle (with $N_{\rm A}$, Avogadro's number). According to Smith and Ewart's model of kinetics in a dispersed medium²⁴

$$\frac{dN_i}{dt} = N_A v_p k_a [P-T] (N_{i-1} - N_i) + k_c [T^*] ((i+1)N_{i+1} - iN_i) + \frac{k_t}{N_A v_p} ((i+2)(i+1)N_{i+2} - i(i-1)N_i)$$
(4)

$$\frac{\mathrm{d}[\mathrm{P}^{\bullet}]}{\mathrm{d}t} = \frac{1}{N_{\mathrm{A}} v_{\mathrm{p}}} \frac{\mathrm{d} \sum (iN_{i})}{\mathrm{d}t}$$
 (5)

$$\begin{split} \frac{\mathrm{d}[\mathbf{P}^{\bullet}]}{\mathrm{d}t} &= k_{\mathrm{a}}[\mathbf{P} - \mathbf{T}] \sum N_{i} - \frac{k_{\mathrm{c}}[\mathbf{T}^{\bullet}]}{N_{\mathrm{A}}V_{\mathrm{p}}} \sum iN_{i} - \\ & \frac{2k_{\mathrm{t}}}{\left(N_{\mathrm{A}}V_{\mathrm{p}}\right)^{2}} (\sum \hat{I}^{2}N_{i} - \sum iN_{i}) \end{split} \tag{6}$$

$$\frac{d[P^{\bullet}]}{dt} = k_{a}[P-T] - k_{c}[T^{\bullet}][P^{\bullet}] - \frac{2k_{t}}{(N_{\Delta}v_{t})^{2}} (\sum_{i} \hat{I}^{2} N_{i} - \sum_{i} iN_{i})$$
(7)

Interestingly, both the rate of activation and the rate of recombination with the nitroxide are written the same way as in the bulk, considering the overall concentrations in the organic phase.

The rate of irreversible termination R_t , i.e., the rate of formation of dead chains, P^{dead} , is given by

$$R_{\rm t} = \frac{\mathrm{d}[P^{\rm dead}]}{\mathrm{d}t}$$

(termination by disproportionation only)

$$R_{\rm t} = \frac{2k_{\rm t}}{(N_{\rm A}V_{\rm p})^2} (\sum i^2 N_i - \sum i N_i)$$
 (8)

To simplify the equations, the value of $k_{\rm t}$ will be considered as constant throughout the polymerization although it is likely that a chain-length dependence exists

Two main situations can be considered, depending on the level of segregation of the system.

First Case: $\tilde{n} = \sum iN_i = N_A v_p[\mathbf{P}^{\bullet}] > 1$. This case applies essentially when the particles are large enough to all contain at least one propagating radical $(N_0 \approx 0)$. When \tilde{n} is far above 1, the concentration of \mathbf{P}^{\bullet} in a given particle is the same as in the bulk (pseudo-bulk system). If the N_i values obey a Poisson distribution (which is expected when \tilde{n} is large), the time evolution of $[\mathbf{P}^{\bullet}]$ simplifies according to²⁵

$$\frac{d[P^*]}{dt} = k_a[P-T] - k_c[T^*][P^*] - \frac{2k_t}{(N_A V_c)^2} (\sum iN_i)^2$$
 (9)

$$\frac{d[P^*]}{dt} = k_a[P-T] - k_c[T^*][P^*] - 2k_t[P^*]^2$$
 (10)

The system behaves similarly as in a homogeneous medium (i.e., eq 10 is the same as it would be in bulk or solution). Thus, in the pseudo-equilibrium regime, the concentrations of T[•] and P[•] can be calculated according to eqs 1 and 2.

Second Case: $\tilde{n} = \sum iN_i = N_A v_p[P^*] < 1$. Only a fraction of the particles contain propagating radicals. If \tilde{n} is far below 1, the system can be simplified if one considers that only particles with 0 (N_0) or 1 radical (N_1) exist. In relation with the terminology which is used in conventional emulsion polymerization, this situation will be referred to as a zero/one system. It has been shown to be the case for the SG1-mediated miniemulsion polymerizations of styrene at 90 °C for which \tilde{n} was always found lower than 0.2.26 This means that the activation of an alkoxyamine in a particle which already contains one propagating radical is immediately followed by a termination reaction which can be either a reversible one with T or an irreversible one with P. For this reason, the fraction N_2 of particles containing 2 radicals remains negligible and follows a steady state with $dN_2/dt = 0$.

$$N_0 + N_1 = 1$$

 $N_2 \approx 0$ and more generally $N_i = 0$ for i > 2

$$\tilde{n} = N_1 = N_{\Delta} v_{\rm p} [\mathbf{P}^{\bullet}]$$

$$\frac{dN_2}{dt} = N_A v_p k_a [P-T](N_1 - N_2) - 2k_c [T^*] N_2 - \frac{2k_t}{N_A v_p} N_2$$
(11)

Since, in this case, N_2 is considered to be small with respect to N_1 , then dN_2/dt can be written more simply:

$$\frac{dN_2}{dt} = N_A v_p k_a [P-T] N_1 - 2k_c [T^*] N_2 - \frac{2k_t}{N_A v_p} N_2 \quad (12)$$

This situation, which is specific for our considered second case, is only true when

$$N_{\rm A} v_{\rm p} k_{\rm a} [{\rm P-T}] < 2k_{\rm c} [{\rm T}^*] + \frac{2k_{\rm t}}{N_{\rm A} v_{\rm p}}$$
 (13)

which corresponds actually to

$$(N_{\rm A} V_{\rm p})^2 k_{\rm a} [{\rm P-T}]_0 < 2k_{\rm t} \tag{14}$$

at the initial stage of the polymerization, in the absence of added free nitroxide. For a given initial concentration of alkoxyamine $[P-T]_0$, this relationship applies when the particle volume is small enough. Indeed, it should be smaller than

$$v_{\mathrm{p}} = 1/N_{\mathrm{A}}\sqrt{2k_{\mathrm{t}}/k_{\mathrm{a}}[\mathrm{P-T}]_{\mathrm{0}}}$$

$$\frac{\mathrm{d}N_{\mathrm{2}}}{\mathrm{d}t} = 0$$

$$N_2 = \frac{k_{\rm a}[{\rm P-T}]N_1}{2k_{\rm c}/(N_{\rm A}v_{\rm p}) + 2k_{\rm c}[{\rm T}^*]}N_{\rm A}v_{\rm p} \tag{15}$$

In this case, eq 7 becomes

$$\frac{d[P^*]}{dt} = k_a[P-T] - k_c[T^*][P^*] - \frac{4k_t}{(N_A v_p)^2} N_2 \quad (16)$$

and the rate of termination is then given by the modified eq $\boldsymbol{8}$

$$R_{\rm t} = \frac{4k_{\rm t}}{(N_{\rm A}v_{\rm p})^2} N_2 \tag{17}$$

$$R_{\rm t} = 2k_{\rm a}[P-T]N_1 \frac{k_{\rm t}/(N_{\rm A}v_{\rm p})}{k_{\rm t}/(N_{\rm A}v_{\rm p}) + k_{\rm c}[T^*]}$$
(18)

$$R_{t} = 2k_{a}[P-T]N_{1}p_{t}$$
 (19)

where $k_{\rm a}[{\rm P-T}]N_{\rm 1}$ is the rate of activation of the alkoxyamines in the particles which already contain a radical P• and $p_{\rm t}$ represents the probability that the newly formed radical undergoes an irreversible termination with the existing radical P• rather than a reversible recombination with a free nitroxide molecule $(1/(N_{\rm A}v_{\rm p})$ represents the concentration of one radical in a particle of volume $v_{\rm p}$).

The term p_t is the probability of irreversible termination in a given particle which contains two propagating radicals. It does not properly describe the overall termination kinetics. Actually, a large value of p_t (larger than 1/2) does not mean that the overall rate of termination in the system is larger than the overall rate of recombination with T. The overall rate of termination is given by eq 19 while the overall rate of recombination is given by $R_c = k_c[T^{\bullet}][P^{\bullet}] = k_c[T^{\bullet}]N_1/(N_A v_p)$. The polymerization can be considered as properly controlled and the activation-deactivation equilibrium is established when $R_c \gg R_t$, i.e., when [T[•]] is larger than 2K[P-T]- $N_{\rm A} v_{\rm p} p_{\rm t}$. This relationship can also be written: $k_{\rm c}[{
m T}^{ullet}][{
m P}^{ullet}] = k_{\rm a}[{
m P}-{
m T}] \gg 2k_{\rm a}[{
m P}-{
m T}]N_{\rm 1}p_{\rm t}$, which means that the average number of radical per particle should be smaller than $1/(2p_t)$. In that case, the overall rate of termination $R_{\rm t}$ can be written differently, from eq 18.

$$R_{\rm t} = 2k_{\rm a}[P-T][P^*]N_{\rm A}v_{\rm p}\frac{k_{\rm t}/(N_{\rm A}v_{\rm p})}{k_{\rm t}/(N_{\rm A}v_{\rm p}) + k_{\rm c}[T^*]}$$
 (20)

$$R_{\rm t} = 2k_{\rm t}[{\rm P}^{\bullet}]^2 \frac{k_{\rm c}[{\rm T}^{\bullet}]}{k_{\rm t}/(N_{\rm A}v_{\rm p}) + k_{\rm c}[{\rm T}^{\bullet}]}$$
(21)

$$R_{\rm t} = 2k_{\rm t}[{\rm P}^{\bullet}]^2(1-p_{\rm t}) \tag{22}$$

Thus, for a given concentration of P* and T*, the rate of termination in a zero/one miniemulsion is smaller than it would be in bulk under similar conditions.

When p_t is very small, i.e., when the following condition is satisfied

$$\frac{k_{\rm t}}{k_{\rm c}[{\rm T}^*]N_{\rm A}v_{\rm p}} \ll 1$$

$$[{\rm T}^*]N_{\rm A}v_{\rm p} \gg k_{\rm f}/k_{\rm c} \tag{23}$$

in other words, when the average number of free Toper particle is larger than k_t/k_c , then the rate of termination can be written $R_t = 2k_t[P^{\bullet}]^2$, in a similar way as in a bulk polymerization.

If, in contrast, the condition is not satisfied and

$$\frac{k_{\rm t}}{k_{\rm c}[\mathrm{T}^*]N_{\rm A}v_{\rm p}} \gg 1 \tag{24}$$

then the probability p_t that two propagating radicals in the same particle undergo an irreversible termination event equals 1 and the overall rate of termination is given by

$$R_{\rm t} = 2k_{\rm a}[{\rm P-T}]N_{\rm 1}$$
 (25)

In that case, the rate-determining step for the irreversible termination is the activation of an alkoxyamine in an already active particle. This situation occurs at the very beginning of the polymerization when the concentration of free nitroxide is not large enough and lasts as long as $[T^{\bullet}]N_{A}v_{p}$ is small with respect to k_{t}/k_{c} .

Analytical Equations for the Evolution of [T'] with Monomer Conversion

Each irreversible termination step leads to the formation of two free nitroxide molecules. Thus, the rate of formation of free nitroxide equals R_t , which gives

$$\frac{\mathrm{d}[\mathrm{T}^{\bullet}]}{\mathrm{d}t} = 2k_{\mathrm{a}}[\mathrm{P}-\mathrm{T}]N_{\mathrm{1}}p_{\mathrm{t}}$$

$$\frac{\mathrm{d}[\mathrm{T}^{\bullet}]}{\mathrm{d}t} = 2k_{\mathrm{a}}[\mathrm{P}-\mathrm{T}][\mathrm{P}^{\bullet}]N_{\mathrm{A}}V_{\mathrm{p}}p_{\mathrm{t}}$$

This equation can be written as a function of monomer conversion (x):

$$\frac{\mathrm{d}[\mathrm{T}^*]}{\mathrm{d}x} = \frac{2k_{\mathrm{a}}[\mathrm{P}-\mathrm{T}]N_{\mathrm{A}}v_{\mathrm{p}}p_{\mathrm{t}}}{k_{\mathrm{p}}(1-x)}$$

$$\frac{d[T^*]}{dx} = \frac{2k_a[P-T]N_A v_p}{k_p(1-x)} \frac{\frac{k_t}{N_A v_p}}{\frac{k_t}{N_A v_p} + k_c[T^*]}$$
(26)

$$\left(\frac{k_{\rm t}}{N_{\rm A}v_{\rm p}} + k_{\rm c}[{\rm T}^*]\right) d[{\rm T}^*] = \frac{2k_{\rm a}[{\rm P-T}]k_{\rm t}}{k_{\rm p}} \frac{dx}{(1-x)}$$
(27)

If one considers that the concentration of alkoxyamine does not change significantly and remains equal to [P-T]₀, this equation can be easily integrated to give the concentration of free nitroxide as a function of monomer conversion

$$[T^{\bullet}]_{(ME)} = -A + \sqrt{(A + [T^{\bullet}]_{0})^{2} - B \ln(1 - x)}$$
 (28)

with [T]₀, the initial concentration of nitroxide in the system, and

$$A = \frac{k_{\rm t}}{N_{\rm A}v_{\rm p}k_{\rm c}}$$

$$B = \frac{4K[P-T]_0k_{\rm t}}{k_{\rm p}}$$

If now, one considers the evolution of [T] in a bulk polymerization, when the pseudo-equilibrium regime is established:

$$\frac{\mathrm{d}[\mathrm{T}^{\bullet}]}{\mathrm{d}t} = 2k_{\mathrm{t}}[\mathrm{P}^{\bullet}]^{2} \tag{29}$$

$$\frac{\mathrm{d}[\mathrm{T}^*]}{\mathrm{d}x} = \frac{2k_{\mathrm{t}}[\mathrm{P}^*]}{k_{\mathrm{p}}(1-x)} = \frac{2k_{\mathrm{t}}K[\mathrm{P}-\mathrm{T}]}{[\mathrm{T}^*]k_{\mathrm{p}}(1-x)}$$

$$[T^*]_{(BULK)} = \sqrt{[T^*]_0^2 - B \ln(1-x)}$$
 (30)

This equation is the same as the equation (eq 2) derived by Fischer⁷ and Fukuda⁸ except that [T[•]] is expressed as a function of monomer conversion instead of polymerization time.

The relationship between [T*](ME) and [T*](BULK) can be written

$$[T^*]^2_{(BULK)} = [T^*]^2_{(ME)} + 2A([T^*]_{(ME)} - [T^*]_0)$$
 (31)

Therefore, the concentration of free nitroxide which is released at a given conversion owing to the PRE is always larger in bulk than in miniemulsion. However, when A is very small either because k_t/k_c is small or because particle volume is large, then the concentration of released nitroxide is the same in both cases. As a consequence, and specially for small particles, the polymerization will be faster in miniemulsion than in bulk but the molar mass distribution will be broader; however, the proportion of dead chains will be smaller.

All these calculations are based on the insolubility of the nitroxide in the water phase. This is obviously wrong for most of the nitroxides which can be used. Therefore, the partition of the nitroxide between the two phases should be considered and will result in a decrease of [T] in the organic phase, leading simultaneously to an increase of [P] and thus to an increase of both the rate of propagation and the overall rate of termination.

Actually, one can consider that only a fraction α of the nitroxide remains in the organic phase:

$$\left[T^{\scriptscriptstyle\bullet}\right]_{particles} = \alpha \left[T^{\scriptscriptstyle\bullet}\right]_{tot.}$$

 α is a function of the partition coefficient ([T $^{\bullet}$]_{H2O}/ [T[•]]_{particles}) and of the respective volumes of the monomer and the water phases. To simplify, one will suppose that α remains constant throughout the polymerization.

The concentration of nitroxide in the particles be-

$$[T^*]_{\text{particles}} = \alpha [T^*]_{\text{tot.}} =$$

$$-A + \sqrt{(A + \alpha [T^*]_0)^2 - B\alpha \ln(1 - x)}$$
 (32)

where [T[•]]₀ and [T[•]]_{tot.} represent the overall concentrations of nitroxide respectively at conversion = 0 and conversion = x (calculated per volume unit of organic phase) and $[T^{\bullet}]_{particles}$ represents the actual concentration inside the particles.

Molar Mass Distribution as a Function of Monomer Conversion

The zeroth, first and second moments of the species containing polymerized monomer units (respectively m_0 , m_1 , and m_2) can be defined and calculated in the same way as that presented by Fischer.⁷ [P_i – T], [P_i*], and [P_i^{dead}] represent the concentrations of dormant, active, and dead chains respectively, containing i monomer units.

$$m_0 = \sum ([P_i - T] + [P_i^{\bullet}] + [P_i^{\text{dead}}]) = [P - T]_0$$
 (33)

$$m_1 = \sum_{i} ([P_i - T] + [P_i^{\bullet}] + [P_i^{\text{dead}}]) = x[M]_0$$
 (34)

with $[M]_0$, the initial concentration of monomer in the organic phase.

$$m_2 = \sum_i f([P_i - T] + [P_i^{\bullet}] + [P_i^{\text{dead}}])$$
 (35)

$$m_2 = x[M]_0 + \frac{x^2[M]_0^2}{[P-T]_0} + \frac{2k_p[M]_0^2}{k_a[P-T]_0} \int [P^{\bullet}](1-x) dx$$
(36)

$$m_2 = x[M]_0 + \frac{x^2[M]_0^2}{[P-T]_0} + \frac{2k_p[M]_0^2}{k_c} \int \frac{(1-x)}{[T^*]} dx$$
 (37)

The number-average degree of polymerization is given by

$$DP_{n} = m_{1}/m_{0} = \frac{x[M]_{0}}{[P-T]_{0}}$$
 (38)

while the weight-average degree of polymerization is

$$DP_{w} = m_{2}/m_{1} = 1 + \frac{x[M]_{0}}{[P-T]_{0}} + \frac{2k_{p}[M]_{0}}{xk_{c}} \int \frac{(1-x)}{[T^{*}]} dx$$
(39)

Then, the polydispersity index can be calculated as

PDI =
$$DP_w/DP_n = 1 + \frac{[P-T]_0}{x[M]_0} + \frac{2k_p[P-T]_0}{x^2k_c} \int \frac{(1-x)}{[T^*]} dx$$
 (40)

which can be numerically integrated when the evolution of $[T^*]$ as a function of monomer conversion x is known. In the calculation of the polydispersity index, the initiator (i=0) was considered as a polymer chain, which explains the high PDI values obtained at low conversions.

The main interesting result is that the value of PDI is larger when the concentration of the nitroxide is smaller. Therefore, it should be larger in miniemulsion than in bulk as it will be illustrated in the following part.

Comparison of the Kinetics for Bulk and Miniemulsion CRP

On the basis of the previous equations, (28) and (30), the evolution of [T•] with conversion can be calculated, respectively, for miniemulsion and bulk polymeriza-

Table 1. Rate Constants of the Reactions Involved in the SG1-Mediated CRP of Styrene at 90 °C

tions. The equilibrium relationship (3) gives the simultaneous evolution of [P $^{\bullet}$] and consequently \tilde{n} with conversion. The evolution with time of monomer conversion can be numerically calculated on the basis of the propagation rate: $\mathrm{d}x/\mathrm{d}t = k_{\mathrm{p}}[\mathrm{P}^{\bullet}](1-x)$ and knowing the evolution of [P $^{\bullet}$] with conversion. The polydispersity index value (PDI) can be numerically calculated according to eq 40. The rate constants used are those of the reactions involved in the SG1-mediated CRP of styrene at 90 °C (Table 1).

Figures 1 and 2 illustrate the effect of particle size on the polymerization kinetics considering two different initiator concentrations and neglecting the partition of the nitroxide between the two phases. It is clearly seen that the rate of miniemulsion polymerization decreases when the diameter is increased and, for large particles, the rate is the same as in bulk. The decrease of *D* is accompanied by a strong decrease of ñ, the value of which is usually far below 1. The large polymerization rates for small particles are the consequence of slow terminations which result in the formation of a low proportion of dead chains and of released nitroxide as conversion progresses. Another consequence of fast propagation is the broadening of the molar mass distribution as the diameter decreases. In Figure 3 the effect of the nitroxide partition coefficient is displayed. For given initial concentrations and particle size, it can be seen that the polymerization rate increases as α decreases (increased water-solubility of T*). The trend is the same for ñ. In contrast to the previous results with $\alpha = 1$ (i.e., negligible water-solubility of T[•]), the faster polymerization is accompanied by a larger proportion of dead chains and of released nitroxide together with an increase of the PDI.

Conclusions

Kinetics of nitroxide-mediated CRP in miniemulsion has been examined. The evolution with monomer conversion of the concentration of released free nitroxide is calculated and compared with that in bulk polymerization. Compartmentalization of the alkoxyamine dormant chains and of the active macroradicals is considered. In contrast, the free nitroxide molecules are supposed to exchange very rapidly between the particles, via diffusion through the aqueous phase. For a given nitroxide and a given temperature (i.e., given activation and deactivation rate constants), the kinetics was shown to strongly depend on both particle size and partition coefficient of the nitroxide between the monomer and the water phases. When water-solubility of the nitroxide is negligible, especially for large particles the kinetics was found to be similar in bulk and in miniemulsion. However, when particle size becomes smaller, the situation changes depending on the concentration of free nitroxide within the particles. At high concentration of T• (when [T•] $N_A v_p \gg k_t/k_c$; i.e., when the average number of free T• per particle is larger than k_t/k_c) the rate of termination is also the same as in a bulk polymerization. In contrast, when the concentration of

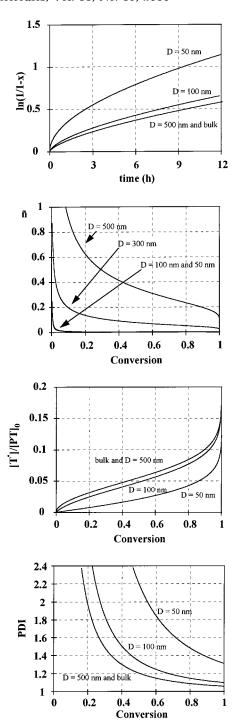
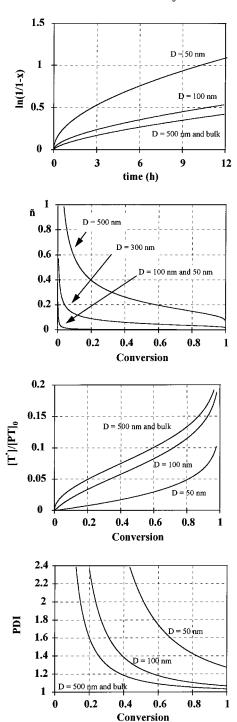
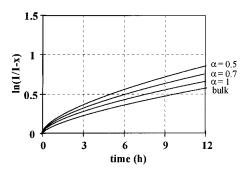
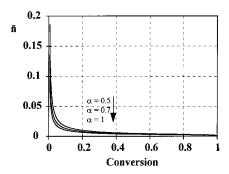
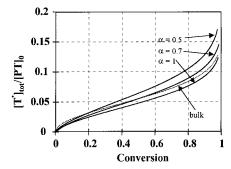
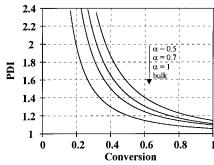



Figure 1. SG1-mediated CRP of styrene at 90 °C. Effect of the diameter when $[P-T]_0 = 0.05 \text{ mol} \cdot L^{-1}$, $[T^{\bullet}]_0 = 0$, and $\alpha =$


free nitroxide within the particles is too small (for instance at the beginning of the polymerization when no free nitroxide is added), the irreversible termination is slower in a dispersed medium than in bulk. The consequence is that both the overall proportion of dead chains and the concentration of released nitroxide are lower, the polymerization is then faster and the molar mass distribution is broader. When the nitroxide is partitioned between the two phases, for a given particle size, the polymerization is faster when the water solubility is larger and the molar mass distribution is broader; in addition, the overall proportion of released nitroxide and consequently the proportion of dead chains is also larger. In all cases, like it is also in bulk,




Figure 2. SG1-mediated CRP of styrene at 90 °C. Effect of the diameter when $[P-T]_0=0.02$ mol·L⁻¹, $[T^*]_0=0$, and $\alpha=$


the possible thermal self-initiation and/or slow decomposition of an added radical initiator would contribute to the consumption of the excess of free nitroxide and would lead therefore to an increased rate of polymerization together with a broadening of the molar mass distribution. The equations derived in this paper would not apply anymore.

Acknowledgment. I would like to express my grateful thanks to Prof. K. Matyjaszewski for the very stimulating and helpful discussions which initiated this work. Muriel Lansalot and Céline Farcet, the Ph.D. students who are involved in nitroxide-mediated CRP

Figure 3. SG1-mediated CRP of styrene at 90 °C. Effect of α when $[P-T]_0 = 0.05 \text{ mol} \cdot L^{-1}$, $[T^*]_0 = 0$, and D = 100 nm.

in emulsion in the group, are acknowledged for their contribution, with the collaboration of Elf-Atochem.

References and Notes

- Matyjaszewski, K. Controlled Radical Polymerization; ACS Symposium Series 685; American Chemical Society: Washington, DC, 1998.
- (2) (a) Solomon, D. H.; Rizzardo, E.; Cacioli, P. U.S. Patent 4,581,429, March 27, 1985. (b) Rizzardo, E. Chem. Aust. 1987, 54, 32. (c) Moad, G.; Rizzardo, E.; Solomon, D. H. In Comprehensive Polymer Science, Eastmond, G. C., Ledwith, A., Russo, S., Sigwalt, P., Eds.; Pergamon: Oxford, U.K., 1989; Vol. 3, p 141. (d) Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K. Macromolecules 1993, 26, 2987. (e) Veregin, R. P. N.; Georges, M. K.; Kazmaier, P. M.; Hamer, G. K. Macromolecules 1993, 26, 5316. (f) Georges,

- M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K.; Saban, M. *Macromolecules* **1994**, *27*, 7228. (g) Hawker, C. J. *J. Am. Chem. Soc.* **1994**, *116*, 11185. (h) Kazmaier, P. M.; Moffat, K. A.; Georges, M. K.; Veregin, R. P. N.; Hamer, G. K. *Macromolecules* **1995**, *28*, 1841. (i) Catala, J.-M.; Bubel, F.; Hammouch, S. O. *Macromolecules* **1995**, *28*, 8441. (j) Moad, G.; Rizzardo, E. *Macromolecules* **1995**, *28*, 8722. (k) Hawker, C. J.; Barclay, G. G.; Orellana, A.; Dao, J.; Devonport, W. *Macromolecules* **1996**, *29*, 5245. (l) Puts, R. D.; Sogah, D. Y. *Macromolecules* **1996**, *29*, 3323.
- (a) Greszta, D.; Mardare, D.; Matyjaszewski, K. Macromolecules 1994, 27, 638.
 (b) Matyjaszewski, K. J. Phys. Org. Chem. 1995, 8, 197.
 (c) Wang, J. S.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117, 5614.
 (d) Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995, 28, 1721.
 (e) Percec, V.; Barboiu, B. Macromolecules 1995, 28, 7970.
 (f) Patten, T. E.; Xia, J.; Abernathy, T.; Matyjaszewski, K. Science 1996, 272, 866.
 (g) Haddleton, D.; Jasieczek, C. B.; Hannon, M. J.; Schooter, A. J. Macromolecules 1997, 30, 2190.
 (h) Matyjaszewski, K.; Patten, T.; Xia, J. J. Am. Chem. Soc. 1997, 119, 674.
 (i) Xia, J.; Gaynor, S. G.; Matyjaszewski, K. Macromolecules 1998, 31, 5958.
 (j) Xia, J.; Matyjaszewski, K. Macromolecules 1997, 30, 7692.
- (4) (a) Wang, J.-S.; Gaynor, S. G.; Matyjaszewski, K. Am. Chem. Soc., Polym. Prepr. 1995, 36 (1), 465. (b) Matyjaszewski, K.; Gaynor, S. G.; Wang, J.-S. Macromolecules 1995, 28, 2093. (c) Gaynor, S. G.; Wang, J.-S.; Matyjaszewski, K. Macromolecules 1995, 28, 8051.
- (5) (a) Le, T. P.; Moad, G.; Rizzardo, E.; Thang, S. H. PCT Int. Appl. WO 9801478 A1980115; Chem. Abstr. 1998, 128, 115390. (b) Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunna, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1998, 31, 5559. (c) Chong, Y. K.; Le, T. P. T.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1999, 32, 2071.
- (6) Goto, A.; Ohno, K.; Fukuda, T. Macromolecules 1998, 31, 2809.
- (7) Fischer, H. J. Polym. Sci.: Part A: Polym. Chem. 1999, 37, 1885.
- (8) Fukuda, T.; Goto, A.; Ohno, K. Macromol. Rapid Commun. 2000, 21, 151.
- (9) Schmidt-Naake, G.; Drache, M.; Taube, C. Angew. Makromol. Chem. 1999, 265, 62.
- (10) Gabaston, L. I.; Jackson, R. A.; Armes, S. P. Macromolecules 1998, 31, 2883.
- (11) Bon, S. A. F.; Bosveld, M.; Klumperman, B.; German, A. L. Macromolecules 1997, 30, 324.
- (12) Marestin, C.; Noël, C.; Guyot, A.; Claverie, J. *Macromolecules* 1998, 31, 4041.
- (13) Uzulina, I.; Kanagasabapathy, S.; Claverie, J. Macromol. Symp. 2000, 150, 33.
- (14) Charmot, D.; Corpart, P.; Adam, H.; Zard, S. Z.; Biadatti, T.; Bouhadir, G. *Macromol. Symp.* **2000**, *150*, 23.
- (15) Makino, T.; Tokunaga, E.; Hogen-Esch, T. E. Am. Chem. Soc., Polym. Prepr. 1998, 39 (1), 288.
- (16) (a) Gaynor, S. G.; Qiu, J.; Matyjaszewski, K. Macromolecules 1998, 31, 5951. (b) Qiu, J.; Gaynor, S. G.; Matyjaszewski, K. Macromolecules 1999, 32, 2872. (c) Qiu, J.; Pintauer, T.; Matyjaszewski, K.; Charleux, B.; Vairon, J.-P. Submitted for publication in Macromolecules.
- (17) Prodpran, T.; Dimonie, V. L.; Sudol, E. D.; El-Aasser, M. S. PMSE 1999, 80, 534.
- (18) MacLeod, P. J.; Keoshkerian, B.; Odell, P.; Georges, M. K. PMSE 1999, 80, 539.
- (19) Durant, Y. G. PMSE 1999, 80, 538.
- (20) (a) Lansalot, M.; Charleux, B.; Vairon, J. P.; Pirri, R.; Tordo, P. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1999, 40 (2), 317. b) Lansalot, M.; Farcet, C.; Charleux, B.; Vairon, J. P.; Pirri, R.; Tordo, P. T In Controlled Radical Polymerization; Matyjaszewski, K., Ed.; ACS Symposium Series 768; American Chemical Society: Washington DC, 2000, in press.
- (21) Lansalot, M.; Farcet, C.; Charleux, B.; Vairon, J.-P.; Pirri, R. *Macromolecules* **1999**, *32*, 7354.
- (22) (a) Sudol, E. D.; El-Aasser, M. S. In Emulsion Polymerization and Emulsion Polymers; Lovell, P. A., El-Aasser, M. S., Eds.; J. Wiley and Sons: New York, 1997; Chapter 20. (b) Miller, C. M.; Sudol, E. D.; Silebi, C. A.; El-Aasser, M. S. Macromolecules 1995, 28, 2754. (c) Miller, C. M.; Sudol, E. D.; Silebi, C. A.; El-Aasser, M. S. Macromolecules 1995, 28, 2765. (d) Miller, C. M.; Sudol, E. D.; Silebi, C. A.; El-Aasser, M. S. Macromolecules 1995, 28, 2772. (e) Landfester, K.; Bechthold, N.; Tiarks, F.; Antonietti, M. Macromolecules 1999, 32, 5222.

- (23) Butté, A.; Storti, G.; Morbidelli, M. DECHEMA Monogr. 1998, *134*, 497.
- (24) Smith, W. V.; Ewart, R. H. J. Chem. Phys. 1948, 16, 592.
- (25) Gilbert, R. G. In Emulsion Polymerization. A Mechanistic Approach; Academic Press: San Diego, CA,1995; Chapter 3,
- (26) (a) Lansalot, M. Ph.D. dissertation. University Pierre and Marie Curie, Paris, France, 1999. (b) Farcet, C.; Lansalot, M.; Charleux, B.; Vairon, J.-P. Submitted to *Macromolecules*.
- (27) (a) Benoit, D.; Grimaldi, S.; Robin, S.; Finet, J.-P.; Tordo, P.;
- Gnanou, Y. J. Am. Chem. Soc., in press. (b) Lacroix-Desmazes, P.; Lutz, J.-F.; Boutevin, B. Macromol. Chem. Phys. 2000, 201, 662.
- (28) Buback, M.; Gilbert, R. G.; Hutchinson, R. A.; Klumperman, B.; Kuchta, F. D.; Manders, B. G.; O'Driscoll, K. F.; Russell, G. T.; Schweer, J. *Macromol. Chem. Phys.* **1995**, *196*, 3267. (29) Buback, M.; Kowollik, C.; Kurz, C.; Wahl, A. *Macromol.*
- Chem. Phys. 2000, 201, 464.

MA0002904